河涌治理設計資料
治理水量:5000m3/d,設計處理能力500m3/h
治理目標:經過環保設施治理后達到《地表水環境質量標準》(GB3838-2002)Ⅴ類水標準后排放,具體參數詳見下表(單位mg/L):
溶解氧 | COD | BOD5 | PH | 氨氮 | 總氮 | 總磷 | 糞大腸菌群(個/L) |
2 | 40 | 10 | 6~9 | 2.0 | 2.0 | 0.4 | 40000 |
- 河涌污水治理工藝流程圖
- 河涌污水治理工藝流程簡述
河涌閘前污水通過提升泵提升至水解酸化池進行水解酸化,水解(酸化)處理方法是一種介于好氧和厭氧處理法之間的方法,和其它工藝組合可以降低處理成本提高處理效率。水解酸化工藝根據產甲烷菌與水解產酸菌生長速度不同,將厭氧處理控制在反應時間較短的厭氧處理第一和第二階段,即在大量水解細菌、酸化菌作用下將不溶性有機物水解為溶解性有機物,將難生物降解的大分子物質轉化為易生物降解的小分子物質的過程,從而改善廢水的可生化性,為后續處理奠定良好基礎。
水解是指有機物進入微生物細胞前、在胞外進行的生物化學反應。微生物通過釋放胞外自由酶或連接在細胞外壁上的固定酶來完成生物催化反應。
酸化是一類典型的發酵過程,微生物的代謝產物主要是各種有機酸。
從機理上講,水解和酸化是厭氧消化過程的兩個階段,但不同的工藝水解酸化的處理目的不同。水解酸化-好氧生物處理工藝中的水解目的主要是將原有廢水中的非溶解性有機物轉變為溶解性有機物,特別是工業廢水,主要將其中難生物降解的有機物轉變為易生物降解的有機物,提高廢水的可生化性,以利于后續的好氧處理。考慮到后續好氧處理的能耗問題,水解主要用于低濃度難降解廢水的預處理。混合厭氧消化工藝中的水解酸化的目的是為混合厭氧消化過程的甲烷發酵提供底物。而兩相厭氧消化工藝中的產酸相是將混合厭氧消化中的產酸相和產甲烷相分開,以創造各自的最佳環境。
經過水解酸化處理后,污水進入接觸氧化池,生物接觸氧化法是以附著在載體(俗稱填料)上的生物膜為主,凈化有機廢水的一種高效水處理工藝。具有活性污泥法特點的生物膜法,兼有活性污泥法和生物膜法的優點。在可生化條件下,不論應用于工業廢水還是養殖污水、生活污水的處理,都取得了良好的經濟效益。該工藝因具有高效節能、占地面積小、耐沖擊負荷、運行管理方便等特點而被廣泛應用于各行各業的污水處理系統。
生物處理是經過物化處理后的環節,也是整個循環流程中的重要環節,在這里氨氮、亞硝酸、硝酸鹽、硫化氫等有害物質都將得到去除,對以后流程中水質的進一步處理將起到關鍵作用。之后污水進入MBR膜過濾。
MBR膜組件由中空纖維膜組成,膜孔徑為0.4μm,此值小于細菌,能有效攔截水中的細菌,大部分病毒,可視為除菌的一種手段,減少了后續投加的消毒藥劑量。反應池內被微濾膜截流下的高濃度的活性污泥濃度達6000~8000mg/l左右,活性污泥BOD負荷率低,一般為0.1~0.2kgBOD/KgMLSS·d,污泥處于減速增長期后期和內源呼吸前期。污水中的有機物得到徹底有效的降解,活性污泥上清液COD、BOD等污染物濃度低,有利于得到高質量的出水。
MBR池設計如果在兩廊道以上時要考慮水力停留時間及布水的合理性。
在缺氧區內,經過水解酸化的作用,使大分子量長鏈有機物分解為易生化的小分子有機物,并同時去除部分NH3-N。
缺氧區的出水自流入到好氧區內,好氧區池底鋪設有曝氣裝置進行曝氣,污水在此池內進行有機物生化降解,氧化為無害的物質,降低水中的BOD和COD。膜區內池底也鋪設曝氣裝置,它主要完成兩種功能,既進行膜的氣水振蕩清洗,保持膜表面的清潔,又繼續在該段進行生物降解,生物降解后的水在真空泵和濾液自吸泵的抽提作用下通過MBR膜,濾過液經由MBR集水管中匯集到清水池進行排放。通過膜的高效截留作用,全部細菌及懸浮均被截留在膜好氧區中,可以有效截留硝化菌,使硝化反應順利進行,有效去除NH3-N;同時可以截留難于降解的大分子有機物,延長其在反應器中的停留時間,使之得到最大限度的降解。MBR膜組件安裝在池內偏上位置,膜下部設置有間歇式的沖氣裝置,定時吹掃動膜片,以緩解MBR周邊的污泥濃度累積。通過好氧區剩余污泥泵定期排出剩余污泥,可控制系統內活性污泥的濃度。最終MBR膜出水經過消毒達標后至河涌閘后排放。